Latex Pictures
# node-tikzjax
chemfig
tikz-cd
circuitikz
pgfplots
array
amsmath
amstext
amsfonts
amssymb
tikz-3dplot
tikz demo1
demo1_0.tex
% demo1
\documentclass[tikz]{standalone}
\usepackage{pgfplots}
\pgfplotsset{compat=1.16}
\begin{document}
\begin{tikzpicture}[scale=2]
\begin{axis}[colormap/viridis]
\addplot3[
surf,
samples=18,
domain=-3:3
]
{exp(-x^2-y^2)*x};
\end{axis}
\end{tikzpicture}
\end{document}
tikz demo2
demo2_1.tex
% demo2
\documentclass[tikz]{standalone}
\begin{document}
\begin{tikzpicture}[domain=0:4]
\draw[very thin,color=gray] (-0.1,-1.1) grid (3.9,3.9);
\draw[->] (-0.2,0) -- (4.2,0) node[right] {$x$};
\draw[->] (0,-1.2) -- (0,4.2) node[above] {$f(x)$};
\draw[color=red] plot (\x,\x) node[right] {$f(x) =x$};
\draw[color=blue] plot (\x,{sin(\x r)}) node[right] {$f(x) = \sin x$};
\draw[color=orange] plot (\x,{0.05*exp(\x)}) node[right] {$f(x) = \frac{1}{20} \mathrm e^x$};
\end{tikzpicture}
\end{document}
tikz demo3
demo3_2.tex
% demo3
\documentclass[margin=10pt]{standalone}
\usepackage[siunitx]{circuitikz}
\begin{document}
\begin{tikzpicture}[scale=2]
\draw (0,0)
to[isource, l=$I_0$, v=$V_0$] (0,3)
to[short, -*, i=$I_0$] (2,3)
to[R=$R_1$, i>_=$i_1$] (2,0) -- (0,0);
\draw (2,3) -- (4,3)
to[R=$R_2$, i>_=$i_2$]
(4,0) to[short, -*] (2,0);
\end{tikzpicture}
\end{document}
tikz demo4
demo4_3.tex
% demo4
% Poincaré Diagram: Classification of Phase Portraits in the (det A,Tr A)-plane
% Author: Gernot Salzer, 22 Jan 2017
\documentclass[tikz,border=10pt]{standalone}
\usetikzlibrary{decorations.markings}
\tikzset
{every pin/.style = {pin edge = {<-}}, % pins are arrows from label to point
> = stealth, % arrow tips look like stealth bombers
flow/.style = % everything marked as "flow" will be decorated with an arrow
{decoration = {markings, mark=at position #1 with {\arrow{>}}},
postaction = {decorate}
},
flow/.default = 0.5, % default position of the arrow is in the middle
main/.style = {line width=1pt} % thick lines for main graph
}
% \newtemplate[Scaling, default 0.18]{\NameOfTemplate}{Caption}{Code}
%
% Typesets Code and stores it in the box \NameOfTemplate.
% This way we avoid nested tikzpictures when inserting the templates into the
% main picture, since nesting is not guaranteed to work.
\newcommand\newtemplate[4][0.18]%
{\newsavebox#2%
\savebox#2%
{\begin{tabular}{@{}c@{}}
\begin{tikzpicture}[scale=#1]
#4
\end{tikzpicture}\\[-1ex]
\templatecaption{#3}\\[-1ex]
\end{tabular}%
}%
}
\newcommand\template[1]{\usebox{#1}} % use the Code stored in box #1
\newcommand\templatecaption[1]{{\sffamily\scriptsize#1}} % typeset caption
\newcommand\Tr{\mathop{\mathrm{Tr}}}
\newtemplate\sink{sink}%
{\foreach \sx in {+,-} % for right/left half do:
{\draw[flow] (\sx4,0) -- (0,0); % draw half of horizontal axis
\draw[flow] (0,\sx4) -- (0,0); % draw half of vertical axis
\foreach \sy in {+,-} % for upper/lower quadrant do:
\foreach \a/\b in {2/1,3/0.44} % draw two half-parabolas
\draw[flow,domain=\sx\a:0] plot (\x, {\sy\b*\x*\x});
}
}
\newtemplate\source{source}%
{\foreach \sx in {+,-} % for right/left half do:
{\draw[flow] (0,0) -- (\sx4,0); % draw half of horizontal axis
\draw[flow] (0,0) -- (0,\sx4); % draw half of vertical axis
\foreach \sy in {+,-} % for upper/lower quadrant do:
\foreach \a/\b in {2/1,3/0.44} % draw two half-parabolas
\draw[flow,domain=0:\sx\a] plot (\x, {\sy\b*\x*\x});
}
}
\newtemplate\stablefp{line of stable fixed points}%
{\draw (-4,0) -- (4,0); % draw horizontal axis
\foreach \sy in {+,-} % for upper/lower half do:
{\draw[flow] (0,\sy4) -- (0,0); % draw half of vertical axis
\foreach \x in {-3,-2,-1,1,2,3} % draw six vertical half-lines
\draw[flow] (\x,\sy3) -- (\x,0);
}
}
\newtemplate\unstablefp{line of unstable fixed points}%
{\draw (-4,0) -- (4,0); % draw horizontal axis
\foreach \sy in {+,-} % for upper/lower half do:
{\draw[flow] (0,0) -- (0,\sy4); % draw half of vertical axis
\foreach \x in {-3,-2,-1,1,2,3} % draw six vertical half-lines
\draw[flow] (\x,0) -- (\x,\sy3);
}
}
\newtemplate\spiralsink{spiral sink}%
{\draw (-4,0) -- (4,0); % draw horizontal axis
\draw (0,-4) -- (0,4); % draw vertical axis
\draw [samples=100,smooth,domain=27:7] % draw spiral
plot ({\x r}:{0.005*\x*\x}); % Using "flow" here gives "Dimension
\def\x{26} % too large", so we draw a tiny
\draw[->] ({\x r}:{0.005*\x*\x}) -- +(0.01,-0.01);% tangent for the arrow.
}
\newtemplate\spiralsource{spiral source}%
{\draw (-4,0) -- (4,0); % draw horizontal axis
\draw (0,-4) -- (0,4); % draw vertical axis
\draw [samples=100,smooth,domain=10:28] % draw spiral
plot ({-\x r}:{0.005*\x*\x}); % Using "flow" here gives "Dimension
\def\x{27.5} % too large", so we draw a tiny
\draw[<-] ({-\x r}:{0.005*\x*\x}) -- +(0.01,-0.008);% tangent for the arrow.
}
\newtemplate[0.15]\centre{center}% British spelling since \center is in use
{\draw (-4,0) -- (4,0); % draw horizontal axis
\draw (0,-4) -- (0,4); % draw vertical axis
\foreach \r in {1,2,3} % draw three circles
\draw[flow=0.63] (\r,0) arc (0:-360:\r cm);
}
\newtemplate\saddle{saddle}%
{\foreach \sx in {+,-} % for right/left half do:
{\draw[flow] (\sx4,0) -- (0,0); % draw half of horizontal axis
\draw[flow] (0,0) -- (0,\sx4); % draw half of vertical axis
\foreach \sy in {+,-} % for upper/lower quadrant do:
\foreach \a/\b/\c/\d in {2.8/0.3/0.7/0.6, 3.9/0.4/1.3/1.1}
\draw[flow] (\sx\a,\sy\b) % draw two bent lines
.. controls (\sx\c,\sy\d) and (\sx\d,\sy\c)
.. (\sx\b,\sy\a);
}
}
\newtemplate\degensink{degenerate sink}%
{\draw (0,-4) -- (0,4); % draw vertical axis
\foreach \s in {+,-} % for upper/lower half do:
{\draw[flow] (\s4,0) -- (0,0); % draw half of horizontal axis
\foreach \a/\b/\c/\d in {3.5/4/1.5/1, 2.5/2/1/0.8}
\draw[flow] (\s-3.5,\s\a) % draw two bent lines
.. controls (\s\b,\s\c) and (\s\b,\s\d)
.. (0,0);
}
}
\newtemplate\degensource{degenerate source}%
{\draw (0,-4) -- (0,4); % draw vertical axis
\foreach \s in {+,-} % for upper/lower half do:
{\draw[flow] (0,0) -- (\s4,0); % draw half of horizontal axis
\foreach \a/\b/\c/\d in {3.5/4/1.5/1, 2.5/2/1/0.8}
\draw[flow] (0,0) % draw two bent lines
.. controls (\s\b,\s\d) and (\s\b,\s\c)
.. (\s-3.5,\s\a);
}
}
\begin{document}
\begin{tikzpicture}[line cap=round,line join=round]
% MAIN DIAGRAM
\draw [main,->] (0,-0.3) -- (0,4.7) % vertical axis
node [label={[above]$\scriptstyle\det A$}] {}
node [label={[above,yshift=0.8cm]%
{\sffamily\large Poincar\'e Diagram: Classification of Phase
Portraits in the $(\det A,\Tr A)$-plane}}] {};
\draw [main,->] (-5,0) -- (5,0) % horizontal axis
node [label={[right,yshift=-0.5ex]$\scriptstyle\Tr A$}] {};
\draw [main, domain=-4:4] plot (\x, {0.25*\x*\x}); % main graph
\node at (-4,4) [pin={[above]$\scriptstyle\Delta=0$}] {};
\node at ( 4,4) [pin={[above,align=left]%
{$\scriptstyle\Delta=0:\;\det A=\frac{1}{4}(\Tr A)^2$}}] {};
% TEMPLATES describing areas
\node at ( 0 ,-1.4) {\template\saddle};
\node at (-4 , 1 ) {\template\sink};
\node at ( 4 , 1 ) {\template\source};
\node at (-1.8, 3.7) {\template\spiralsink};
\node at ( 1.8, 3.7) {\template\spiralsource};
% TEMPLATES labeling lines and points
\node at ( 0 , 1.2) [pin={[draw,right,xshift=0.3cm]%
\template\centre}] {};
\node at (-3 , 0 ) [pin={[draw,below,yshift=-1cm]%
\template\stablefp}] {};
\node at ( 3 , 0 ) [pin={[draw,below,yshift=-1cm]%
\template\unstablefp}] {};
\node at (-3.5,{0.25*3.5*3.5}) [pin={[draw,left,xshift=-1.15cm,yshift=-0.3cm]%
\template\degensink}] {};
\node at ( 3.5,{0.25*3.5*3.5}) [pin={[draw,right,xshift=0.9cm,yshift=-0.3cm]%
\template\degensource}] {};
\node at ( 0 , 0 ) [pin={[draw,above left,align=center,xshift=-0.3cm]%
\templatecaption{uniform}\\[-1ex]\templatecaption{motion}}] {};
\end{tikzpicture}
\end{document}
tikz demo5
demo5_4.tex
% demo5
\documentclass[tikz]{standalone}
\begin{document}
\begin{tikzpicture}[scale=2]
\node[circle,
minimum width =30pt ,
minimum height =30pt ,draw=blue] (1) at(0,2){$x_1$};
\node[circle,
minimum width =30pt ,
minimum height =30pt ,draw=blue] (2) at(0,0){$x_2$};
\node[circle,
minimum width =30pt ,
minimum height =30pt ,draw=orange] (3) at(2,-1){$a_3^{(2)}$};
\node[circle,
minimum width =30pt ,
minimum height =30pt ,draw=orange] (4) at(2,1){$a_2^{(2)}$};
\node[circle,
minimum width =30pt ,
minimum height =30pt ,draw=orange] (5) at(2,3){$a_1^{(2)}$};
\node[circle,
minimum width =30pt ,
minimum height =30pt ,draw=orange] (6) at(4,-1){$a_3^{(3)}$};
\node[circle,
minimum width =30pt ,
minimum height =30pt ,draw=orange] (7) at(4,1){$a_2^{(3)}$};
\node[circle,
minimum width =30pt ,
minimum height =30pt ,draw=orange] (8) at(4,3){$a_1^{(3)}$};
\node[circle,
minimum width =30pt ,
minimum height =30pt ,draw=purple] (9) at(6,2){$a_1^{(4)}$};
\node[circle,
minimum width =30pt ,
minimum height =30pt ,draw=purple] (10) at(6,0){$a_2^{(4)}$};
\draw[->] (1) --(3);
\draw[->] (1) --(4);
\draw[->] (1) --(5);
\draw[->] (2) --(3);
\draw[->] (2) --(4);
\draw[->] (2) --(5);
\draw[->] (3) --(6);
\draw[->] (3) --(7);
\draw[->] (3) --(8);
\draw[->] (4) --(6);
\draw[->] (4) --(7);
\draw[->] (4) --(8);
\draw[->] (5) --(6);
\draw[->] (5) --(7);
\draw[->] (5) --(8);
\draw[->] (6) --(9);
\draw[->] (6) --(10);
\draw[->] (7) --(9);
\draw[->] (7) --(10);
\draw[->] (8) --(9);
\draw[->] (8) --(10);
\end{tikzpicture}
\end{document}
tikz demo6
demo6_5.tex
% demo6
% Author: Till Tantau
% Source: The PGF/TikZ manual
\documentclass[tikz]{standalone}
\begin{document}
\pagestyle{empty}
\begin{tikzpicture}[scale=3,cap=round]
% Local definitions
\def\costhirty{0.8660256}
% Colors
\colorlet{anglecolor}{green!50!black}
\colorlet{sincolor}{red}
\colorlet{tancolor}{orange!80!black}
\colorlet{coscolor}{blue}
% Styles
\tikzstyle{axes}=[]
\tikzstyle{important line}=[very thick]
\tikzstyle{information text}=[rounded corners,fill=red!10,inner sep=1ex]
% The graphic
\draw[style=help lines,step=0.5cm] (-1.4,-1.4) grid (1.4,1.4);
\draw (0,0) circle (1cm);
\begin{scope}[style=axes]
\draw[->] (-1.5,0) -- (1.5,0) node[right] {$x$};
\draw[->] (0,-1.5) -- (0,1.5) node[above] {$y$};
\foreach \x/\xtext in {-1, -.5/-\frac{1}{2}, 1}
\draw[xshift=\x cm] (0pt,1pt) -- (0pt,-1pt) node[below,fill=white]
{$\xtext$};
\foreach \y/\ytext in {-1, -.5/-\frac{1}{2}, .5/\frac{1}{2}, 1}
\draw[yshift=\y cm] (1pt,0pt) -- (-1pt,0pt) node[left,fill=white]
{$\ytext$};
\end{scope}
\filldraw[fill=green!20,draw=anglecolor] (0,0) -- (3mm,0pt) arc(0:30:3mm);
\draw (15:2mm) node[anglecolor] {$\alpha$};
\draw[style=important line,sincolor]
(30:1cm) -- node[left=1pt,fill=white] {$\sin \alpha$} +(0,-.5);
\draw[style=important line,coscolor]
(0,0) -- node[below=2pt,fill=white] {$\cos \alpha$} (\costhirty,0);
\draw[style=important line,tancolor] (1,0) --
node [right=1pt,fill=white]
{
$\displaystyle \tan \alpha \color{black}=
\frac{{\color{sincolor}\sin \alpha}}{\color{coscolor}\cos \alpha}$
} (intersection of 0,0--30:1cm and 1,0--1,1) coordinate (t);
\draw (0,0) -- (t);
\draw[xshift=1.85cm] node [right,text width=6cm,style=information text]
{
The {\color{anglecolor} angle $\alpha$} is $30^\circ$ in the
example ($\pi/6$ in radians). The {\color{sincolor}sine of
$\alpha$}, which is the height of the red line, is
\[
{\color{sincolor} \sin \alpha} = 1/2.
\]
By the Theorem of Pythagoras we have ${\color{coscolor}\cos^2 \alpha} +
{\color{sincolor}\sin^2\alpha} =1$. Thus the length of the blue
line, which is the {\color{coscolor}cosine of $\alpha$}, must be
\[
{\color{coscolor}\cos\alpha} = \sqrt{1 - 1/4} = \textstyle
\frac{1}{2} \sqrt 3.
\]%
This shows that {\color{tancolor}$\tan \alpha$}, which is the
height of the orange line, is
\[
{\color{tancolor}\tan\alpha} = \frac{{\color{sincolor}\sin
\alpha}}{\color{coscolor}\cos \alpha} = 1/\sqrt 3.
\]%
};
\end{tikzpicture}
\end{document}
tikz demo7
demo7_6.tex
% demo7
\documentclass[tikz]{standalone}
\usetikzlibrary {angles,calc,quotes}
\begin{document}
\begin{tikzpicture}[angle radius=.75cm, scale=2]
\node (A) at (-2,0) [red,left] {$A$};
\node (B) at ( 3,.5) [red,right] {$B$};
\node (C) at (-2,2) [blue,left] {$C$};
\node (D) at ( 3,2.5) [blue,right] {$D$};
\node (E) at (60:-5mm) [below] {$E$};
\node (F) at (60:3.5cm) [above] {$F$};
\coordinate (X) at (intersection cs:first line={(A)--(B)}, second line={(E)--(F)});
\coordinate (Y) at (intersection cs:first line={(C)--(D)}, second line={(E)--(F)});
\path
(A) edge [red, thick] (B)
(C) edge [blue, thick] (D)
(E) edge [thick] (F)
pic ["$\alpha$", draw, fill=yellow] {angle = F--X--A}
pic ["$\beta$", draw, fill=green!30] {angle = B--X--F}
pic ["$\gamma$", draw, fill=yellow] {angle = E--Y--D}
pic ["$\delta$", draw, fill=green!30] {angle = C--Y--E};
\node at ($ (D)!.5!(B) $) [right=1cm,text width=6cm,rounded corners,fill=red!20,inner sep=1ex]
{
When we assume that $\color{red}AB$ and $\color{blue}CD$ are
parallel, i.\,e., ${\color{red}AB} \mathbin{\|} \color{blue}CD$,
then $\alpha = \gamma$ and $\beta = \delta$.
};
\end{tikzpicture}
\end{document}
tikz demo8
demo8_7.tex
% demo8
\documentclass[tikz]{standalone}
\usepackage{chemfig}
\begin{document}
\chemfig{[:-90]HN(-[::-45](-[::-45]R)=[::+45]O)>[::+45]*4(-(=O)-N*5(-(<:(=[::-60]O)-[::+60]OH)-(<[::+0])(<:[::-108])-S>)--)}
\end{document}
tikz demo9
samples_8.tex
\documentclass[tikz]{standalone}
\definecolor{DarkBlue}{rgb}{0,0,0.5} % 添加缺失的颜色定义
\begin{document}
\begin{tikzpicture}[scale=2]
\node (so32) [align=center] at (-5,-1) {heterotic\\$SO(32)$};
\node (e8e8) [align=center] at (-3,4) {heterotic\\$E(8) \times E(8)$};
\node (tiia) [align=center] at (4,3) {Type II A};
\node (tiib) [align=center] at (5,-2) {Type II B};
\node (ti) [align=center] at (0,-5) {Type I};
\draw[bend left,<->] (so32) to node [below right,align=center] {compac-\\tification} (e8e8);
\draw[bend left,<->] (e8e8) to node [below left] {M-theory} (tiia);
\draw[bend left,<->] (tiia) to node [below left] {T-duality} (tiib);
\draw[bend left,<->] (tiib) to node [above left,align=center] {orientifold\\action $\Omega$} (ti);
\draw[bend left,<->] (ti) to node [above right] {S-duality} (so32);
\begin{scope}
% 修正路径绘制方式
\clip (so32.east) to [bend right] (e8e8.south)
to [bend right] (tiia.south)
to [bend right] (tiib.west)
to [bend right] (ti.north)
to [bend right] cycle; % 闭合路径
\foreach \c in {so32.east,e8e8.south,tiia.south,tiib.west,ti.north}{%
\foreach \r in {1,...,6}{%
\draw[DarkBlue] (\c) circle (\r*0.15cm); % 使用已定义的颜色
}
}
\end{scope}
% 修正路径绘制方式
\draw[bend right,very thick,gray,fill,fill opacity=0.3]
(so32.east) to [bend right] (e8e8.south)
to [bend right] (tiia.south)
to [bend right] (tiib.west)
to [bend right] (ti.north)
to [bend right] cycle; % 闭合路径
\node (mth) [align=center] at (0,0) {parameter space of\\[2ex]{\Large \textbf{M-Theory}}};
\end{tikzpicture}
\end{document}
TexNote.
# latex c/c++/rust
\# ==> \\\#
\$ ==> \\\$
\% ==> \\\%
\& ==> \\\&
\_ ==> \\\_
\{ ==> \\\{
\} ==> \\\}
\~{} ==> \\\~\{\}
\^{} ==> \\\^\{\}
\ ==> \\
\< ==> \\\<
\> ==> \\\>